FREE-CONVECTION HEAT TRANSFER IN A SPHERICAL VOLUME
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Convective heat transfer in a completely filled spherical volume
with a constant heat flux density on its boundary is investigated.

NOTATION

R = radius of vessel

m = mass

q = specific heat flux

¢, — specific heat at constant pressure

a = thermal diffusivity

t = temperature

z = vertical distance from lowest point of sphere

At — time-averaged temperature drop in boundary layer for given
angle 6

= heat transfer coefficient

= thermal expansion coefficient

coordinate angle,

thermal conductivity

kinematic viscosity

time

= Fourier number

= Nusselt number

G* = modified Grashof number

P = Prandtl number
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There have been few investigations of convective heat transfer in
spherical volumes. There is the work of Schmidt {1], who investigated
convection in a sphere filled with ethanol, butanol, methanol, or
water with a constant temperature on the boundary, and that of Ostro-
mov [2], who investigated convectionina water-filled spherical cavity
in a block containing a heater and a cooler.

In this paper the experiments were conducted in a spherical ves~
sel of diameter 300 mm containing distilled water with an initial
temperature of 20 or 50° C, or ethyl alcohol (concentration 96%) with
an initial temperature of 20° C. A diagram of the apparatus is shown
in Fig. 1.

A prescribed heat flux on the surface of the sphere was provided
by an electric heater consisting of a multilayer coil of constantan
wire (0.25 mm in diameter) in silk insulation impregnated with heat~
resistant lacquer. The gap between the turns of the heater was about
0.1 mm. The heater was supplied with direct current from a stabilized
power supply. The power was measured by a Class 1 D-57 electrostatic
wattmeter. The shell of the vessel was made of thin (about 0.6 mm)
material of relatively low thermal conductivity (Cr18Ni9Ti steel),
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Fig. 1. Diagram of apparatus: 1) working volume with

heater; 2) guard heater shell; 3) heat-insulating case;

4) TS-24 thermostat; 5) thermocouples; 6) cold-junc-

tion thermostat; 7) S=3S voltage stabilizer; 8) VSA-§

rectifier; 9) D=57 wattmeter; 10) temperature-mea-

suring unit; 11) guard-heater power regulator; 12)
thermopile.

which in conjunction with the design of the heater ensured a fast re-
sponse of the system and a heat flux density which was constant over
the whole sphere and the same for the external and internal surfaces of
the shell. A preliminary estimate showed that the quantity of heat
flowing through the shell in the region of the maximum temperature
gradient did not exceed 1% of the quantity of heat entering this region
of the shell from the heater. To prevent leakage of heat to the sur-
roundings the investigated volume was surrounded by plastic foam
insulation and furnished with an automatically controlled guard heater.
The experiments could be carried out without the guard heater, since
the heat loss was low (not more than 5-10%) and could be allowed for
in the treatment of the experimental results.

The temperature in the liquid and on the shell was measured by
copper~constantan thermocouples, whose thermoelectrodes had a dia-
meter of 0.1 mm and were covered with teflon insulation. The emf of
the thermocouples was recorded by an EPP-09 automatic multipoint
potentiometer with ranges 0~400, 0~1000, and 0-3000 pW. Check
measurements were made with a R-306 potentiometer and on M17/1
galvanometer.

The arrangement of the thermocouple junctions in the investigated
volume is shown schematically in Fig. 1. The temperature was mea-
sured along the vertical axis of the sphere, in several horizontal sec-

Table 1
C,H,0H, q = 8.4.100 W/m? H,0, q =3.4.10° W/m?
o ’ NG \ NG ’ A | ay10-2 g av \ At l A | a0
0 4.2 4.7 4.7 1.78 4} 1.2 1.3 1.3 2,62
22.5 4.6 4.8 4.8 1.75 22.5 1.1 1.2 1.2 2.%4
45 4.1 4,7 4.7 1.78 45 1.3 1.3 1.4 2.682
67.5 3.9 4.9 4.9 1.7 67.5 0.8 1.2 1.3 2.84
112.5 3.8 5.0 5.0 1.68 112.5 0.8 1.2 1.2 2.84
135 3.7 4.5 5.0 1.68 135 1.0 1.2 1.4 2.62
157.5 3.5 3.8 5.3 1.58 157.5 1.1 1.3 1.5 2.27
180 3.9 4.6 6.0 1.40 130 0.9 1.4 1.7 2.00

Note. a* = 1.6 - 10> W/m? - deg; o) = 2.5 + 10 W/m? -
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tions, and also at intervals of 22.5° in a meridionalsectionintheregion
of the thermal boundary layer and on the internal surface of the shell.
Looking ahead, we note that the temperature distributions in the in-
vestigated process, with the limits of accuracy of temperature mea-
surement (0.1-0.3'), were symmetric relative to the vertical axis and,
hence, the results obtained for the meridian section were valid for

the whole volume. In the boundary layer the thermocouple junctions
were situated along a normal to the shell surface at a given coordinate
angle O at distances of 1, 2, and 5§ mm from it and were connected
differentially with the corresponding thermocouple on the shell. This
enabled us to record the temperature drops across the boundary layer by
means of narrow-range EPP-09 instruments with a scale of 0~400 pV.
The thermoelectrodes, contained in a metal capillary, were situated
in the equitemperature region at a distance of 30 mm from the junc-
tion. This significantly reduced the error in temperature measurement
due to flow of heat through the electrodes to the junction.

Before the start of the experiment the temperature of the investi=
gated volume was made constant by repeated pumping of the working
liquid through it and the TS$-24 thermostat. When the liquid had settled
a constant power was applied to the heater and the change in tempera-
ture at different points in the volume was automatically recorded. The
experiments lasted 1 to 10 hr, depending on the heat flux density,
which varied in the investigations from 1.7 «10°t0 1.8.10° W/m?,

The investigations showed that heat transfer on the wall-liquid
boundary in a spherical volume with the indicated boundary conditions
can be regarded as quasistationary, since a short time after the start
of the process there is a steady time-averaged® temperature drop in the
boundary layer for each point on the boundary and the heating curves of
points at the same level in the liquid and on the shell are parallel
straight lines. The period in which the formation of the boundary layer
took place in the discussed experiments corresponded to a Fourier num-=
ber F =~ 4-107,

The quasistationarity of heat transfer at the wall-liquid boundary
allows us to exclude the Fourier number from the characteristic criteria
in finding the relationship for the heat transfer coefficients and to take

N = [(G*, P).

If the criterion G does not exceed 101 in order of magnitude, the
effect of inertial forces [3,4] in free-convection conditions can be
regarded as small,

N = C(G*P)"* (C, n == const) 2)

An analysis of the curves of temperature distribution over the thick=~
ness of the boundary layer in different regions of the boundary indicates
that the rate of heat transfer on the greater part of the wall-liquid
boundary is practically the same, since we observed no significant
difference in the boundary layer thickness nor in the temperature drop
through the layer (Table 1). An exception is the upper region of the
sphere, where the heat transfer coefficient is reduced by 10—-15% at
6 = 180°.In view of what has been said we can represent the heat trans-
fer at the boundary by an integral heat transfer coefficient defined in
the following way:
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Here Aty(8) is the time-averaged temperature drop across the boundary
layer for a given angle 6; n is the number of measurement points.

Table 1 gives the temperature drops across the boundary layer in
various regions of the boundary, and the local and integral heat transfer
coefficients for two heat flux densities.

Here At', At", and At™ are the temperature drops (in deg) across
the boundary layer at distances of 1, 2, and 5§ mm from the shell,
respectively; ais the local heat transfer coefficient; q is the heat flux
density.

In generalized coordinates the relationship for the integral heat
transfer coefficient, shown in Fig. 2, has the form

N = 0.83(G*P)*2 for 3.5-10° T G*P < 3.2.101.
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Fig. 2. 1) Water (t = 30° C); 2) water (t =
= 60° C); 3) ethanol (t = 30° C).

Relationship (4) was obtained by treatment of more than 400 ex-
perimental points by the method of least squares. The mean scatter
of the experimental data from the curve in Fig. 2 is within 1 5%. The
coefficient C and the index n are determined with the same accuracy.
Owing to the absence of published formulas for the heat transfer coef-
ficient in a spherical volume with boundary conditions of the second
kind we cannot make comparisons with the results of other authors.

Owing to the nonuniformity of the temperature distribution in the
volume a knowledge of the heat transfer coefficient is not sufficient
for calculation of the temperature distribution on the shell bounding
the volume. In the case of a spherical volume with a uniform and
steady heat flux on the boundary it is sufficient to know the tempera=~
ture distribution along the vertical axis, since in any horizontal cross
section (apart from the boundary layer) the temperature is the same.

Figure 3 shows the temperature distribution (for water) on the ver~
tcal axis of the spherical volume and in a meridional cross section on
the shell for different heat flux densities. As the figure shows, in the
upper region of the spliere (z > 1.5R) there is pronounced temperature
stratification of the liquid. In the lower part of the sphere (z > 1.5R)
the mean temperature gradient

A_tz . tmax ~ tin

R = R
is 0.02-0.1 deg/cm, whereas in the upper region it is 0.5-2 deg/cm,
i.e., 20 times higher. This pronounced thermal stratification of the
liquid can be attributed to the gravitational thermal effect of convec-
tion, i.e., the temperature of the upper region of the sphere depends
not only on the heat flux entering the liquid in the given region through
the shell, but also on the heated mass of liquid rising along the shell
from below.

The rate of heating of the points belonging to the upper surface
and points lying below z = 1.5R, and also the time for attainment of
the linear region of the relationship t = f(7), is different. For the lower
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Fig. 3. 1) Liquid; 2) wall. I)q =1.7°10° w/m’
F=08-10"%1)q=50-10*w/m% F=0.3"
1074 MI) q=8.4-102 w/m% F=0.9-1072

*A time-averaged temperature drop in this case means the tempera=
ture drop averaged over a period much shorter than the time of the
experiment. We had to consider the time=averaged temperature drop
in the boundary layer because of the observed temperature oscillations
(with a period not exceeding 60 sec), which reached 30% of the total
dropin the region 0° = 6'< 22.5° and, in addition, with increase in the
coordinate angle gradually decreased to 10-20% at & = 67.5%; in the
region 112.5° = @ = 180" there were hardly any oscillations. The in-
vestigation of the nature of these oscillations is beyond the scope of
this work.



Table 2

Fy = 0.59.10-2 Fa = 1.57.40-2
z
N —_
' R A-10? k A0 *
1--3 0.1—0.6 1 0 3.2 0
4 0.9 1.2 0 3.5 0
5 1.15 1.5 ¢ 3.8 0
6 1.4 3.4 —0.02 9 —0.02
7 1.7 73 —0.12 152 —0.12
8 2 146 —0.12 246 —0.12

region the t1rne in our experiments corresponded to a Founer number
F=1.6- 107° , whereas for the upper region F = (3.5-4)- 107°, Heating
of the lower region is of a quasi-stationary nature, i.e., beginning at
the instant F = 1.6-10"° a steady vertical temperature stratification of
the liquid is established. The rate of heating of points in the region is
similar to the corresponding characteristic of the mean bulk tempera-
ture. .

The mean bulk temperature of the liquid was calculated by the
integral method from the curve of temperature distribution along the
vertical axis of the sphere and from the heat balance equation
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Fig. 4a. The circlesare for water and the triangles
for ethanol.
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Here t is the mean bulk temperature, t,is the initial temperature,
S is the surface of the spherical volume, cy is the specific heat at
constant pressure, and m is the mass of the liquid.

We found that the cross section at which the liquid temperature

is equal to the mean bulk temperature lies at a height z = (1.25~1.3)R,
irrespective of the heat load on the boundary of the volume. The tem-
perature in the greater part of the sphere (0 < z =< 1.5R) is close to

the mean bulk temperature and the deviation from t is 1-4° for a total
vertical drop of 10-35°, We attempted to represent the temperature
distribution along the vertical axis of the sphere in dimensionless form

A
T=A(GPF, T=(t—t),p for + = const ()

for two Fourier numbers; F; = 0.59 - 10 “2and F, =1.57-107°

The values of A and k for different z/R are given in Table 2,
where the first column gives the numbers of the curves in Figs. 4a and
b. The values of the coefficients in formula (5) are determined to an
accuracy of 10%.

Sincethe liquid heating curves for a Fourier number F > 3.5 - 107
of a linear nature we can obtain from relationship (5) the vertical
temperature distribution in the liquid for any instant, beginning at
F=3.5-107%
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